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Dissociation between magnitude comparison and
relation identification across different formats for
rational numbers

Maureen E. Graya, Melissa DeWolfa, Miriam Bassokb and Keith J. Holyoaka

aDepartment of Psychology, University of California, Los Angeles, CA, USA; bDepartment of
Psychology, University of Washington, Seattle, WA, USA

ABSTRACT
The present study examined whether a dissociation among formats for rational
numbers (fractions, decimals, and percentages) can be obtained in tasks that
require comparing a number to a non-symbolic quantity (discrete or else
continuous). In Experiment 1, college students saw a discrete or else continuous
image followed by a rational number, and had to decide which was numerically
larger. In Experiment 2, participants saw the same displays but had to make a
judgment about the type of ratio represented by the number. The magnitude
task was performed more quickly using decimals (for both quantity types),
whereas the relation task was performed more accurately with fractions (but
only when the image showed discrete entities). The pattern observed for
percentages was very similar to that for decimals. A dissociation between
magnitude comparison and relational processing with rational numbers can be
obtained when a symbolic number must be compared to a non-symbolic
display.

ARTICLE HISTORY Received 16 February 2017; Accepted 8 August 2017

KEYWORDS Mathematical reasoning; rational numbers; relations

Doubtless, the most salient property of numbers is that they convey magni-
tudes. Numerous studies of numerical magnitude comparisons have yielded
a symbolic distance effect: comparisons of numbers that are closer in magni-
tude (e.g., 7 vs. 8) are slower and more error prone than comparisons of num-
bers that are farther apart (e.g., 2 vs. 8; Moyer & Landauer, 1967). A similar
distance effect is observed in children (e.g., Brannon, 2002). A major goal of
recent research in cognitive psychology and education has been to find ways
to aid in learning the magnitudes of rational numbers, such as fractions (e.g.,
Bailey et al., 2015; Booth, Newton, & Twiss-Garrity, 2014; Vukovic et al., 2014).
In this work, conceptual understanding of fractions is often identified with an
understanding of fraction magnitudes (e.g., 4/5 is larger than 1/2), the
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mathematical principles relevant to fractions (e.g., an infinite number of frac-
tions can be placed between any two other fractions), and notations for
expressing equivalent fraction magnitudes (e.g., 3/4 = 6/8 = 0.75) (Bailey
et al., 2015; Siegler & Lorti-Forgues, 2015).

Fractions and decimals are often viewed simply as alternative notations,
which (other than rounding error) are equivalent in magnitude (e.g., 3/8 vs.
0.375). Often overlooked is the fact that, in addition to representing magni-
tudes, the core definition of a fraction (i.e., a rational number that can be
expressed as the quotient of two natural numbers, a/b, where b 6¼ 0) is inher-
ently relational. Specifically, the bipartite structure of the a/b notation
expresses a relational model for the quantities corresponding to the numera-
tor and denominator (see Figure 1). The form a/b expresses a division relation
between natural numbers, which has the form of a fraction; whereas the out-
put of the division, c, expresses the magnitude of that relation and can be a
decimal (with magnitude less than 1 when a < b). As illustrated in Figure 1,
the bipartite structure of the fraction provides a direct mapping to countable
subsets in a visual display (e.g., a subset of three white objects within a set of
eight). In contrast, the decimal equivalent loses the two-dimensional structure
of the fraction. Instead, it provides a one-dimensional measure of a portion of
a continuous unit quantity. (For discussions of the relationship between
dimensionality of conceptual structures and relational complexity, see Half-
ord, Wilson, & Phillips, 1998, 2010.)

This analysis suggests that alternative notations for numbers may differ in
their inherent effectiveness for performing tasks that tap into magnitude ver-
sus relational knowledge.

Figure 1. The bipartite structure of a fraction maps to countable subsets in a visual dis-
play (left), whereas the decimal equivalent represents a one-dimensional magnitude
(right). Reprinted with permission from Rapp et al. (2015).
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In particular, the different formats for rational numbers appear to be selec-
tively aligned with discrete versus continuous quantities: fractions with the
former, decimals with the latter (Rapp, Bassok, DeWolf, & Holyoak, 2015). The
contrast between discreteness and continuity, which is closely linked with the
linguistic distinction between count and mass nouns (e.g., marbles vs. water,
respectively; Bloom & Wynn, 1997), is a basic ontological distinction that
affects how people parse the world. For example, Spelke, Breinlinger,
Macomber, and Jacobson (1992) argued that young babies use this distinc-
tion to discriminate between objects: continuity of motion indicates that a
single object is moving in space, whereas discontinuity indicates the exis-
tence of more than one object.

Recent research has shown that differences in the formats for expressing
rational numbers influence how people reason with them in different con-
texts. When people are asked to make speeded magnitude comparisons
between pairs of numbers, integers and decimals show an advantage in
speed and accuracy relative to fractions (e.g., DeWolf, Chiang, Bassok, Holy-
oak, & Monti, 2016; DeWolf, Grounds, Bassok, & Holyoak, 2014; Lee, DeWolf,
Bassok, & Holyoak, 2016; Schneider & Siegler, 2010). The magnitude compari-
son task requires processing one-dimensional representations of magnitude,
which is more natural for integers and decimals than for fractions. By contrast,
in reasoning contexts that evoke relational processing, fractions show an
advantage relative to decimals when used to characterise relations between
sets of discrete and countable entities (DeWolf, Bassok, & Holyoak, 2015a; Lee
et al., 2016; Plummer, DeWolf, Bassok, Gordon, & Holyoak, 2017; for a review,
see DeWolf, Bassok, & Holyoak, 2017).

Goals of the present study

In the present paper, we report two experiments that aim to more directly
demonstrate a dissociation between tasks requiring magnitude comparison
(Experiment 1) and relational reasoning (Experiment 2) for different rational
number formats.

The present experiments extend previous studies in three ways. First,
almost all previous studies of magnitude comparisons have involved compari-
sons either of two symbolic magnitudes (i.e., numbers) or else two non-sym-
bolic magnitudes (i.e., pictured quantities). However, a primary purpose of
using a symbolic number is to relate the number to quantitative properties of
non-symbolic entities. A small number of studies have examined how holistic
processing of rational number magnitudes may vary depending on the sym-
bolic or non-symbolic nature of the representation. For example, Matthews
and Chesney (2015) demonstrated a distance effect when adults performed
magnitude comparisons of symbolic ratios (fractions) with non-symbolic
ratios (ratios of quantities composed of either discrete dots or continuous
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circles; see also Matthews & Lewis, 2016). However, the present Experiment 1
is the first to investigate magnitude comparisons when both the type of non-
symbolic quantity (continuous vs. discrete) and the type of symbolic number
format (fraction, decimal, percentage) are systematically varied. If magnitudes
are most naturally represented on a continuous mental number line, then
comparisons will be made more easily when the non-symbolic quantity is
continuous. If such a continuous advantage holds even for comparisons with
fractions, this would suggest that a fraction is converted into a continuous
magnitude in order to compare it with a non-symbolic quantity.

A second and related goal was to eliminate possible confoundings
between the type of decision required and other variables. Previous studies
showing a decimal advantage in magnitude comparisons have all involved
numbers only, whereas studies showing a fraction advantage in relational
processing have all involved a comparison of a number to a non-symbolic dis-
play. Moreover, the range of numbers involved has not been controlled across
different tasks. These confounds limit the interpretation of prior findings. In
the present study, both magnitude comparisons (Experiment 1) and relation
judgements (Experiment 2) required application of a symbolic number to a
non-symbolic display (a picture, which could show either a continuous quan-
tity or discrete entities). In addition, we matched the actual numbers used in
the two tasks (thus eliminating any possible differences in performance attrib-
utable to the specific numbers, as opposed to the type of judgement
required).

Third, we expanded the formats to be compared by using three notations
for rational numbers: fractions (e.g., 3/4), decimals (e.g., 0.75) and percentages
(e.g., 75%). Whereas fractions and decimals have received considerable atten-
tion, no studies (to our knowledge) have examined the impact of the percent-
age format as well. More generally, the paucity of research on knowledge of
percentages has been highlighted in a recent review (Tian & Siegler, 2017).
Different views of percentages lead to alternative predictions about how they
will compare with fractions and decimals in performing different numerical
tasks. According to Parker and Leinhardt (1995), percentages are “privileged
proportions”, and their most common interpretation and use is to represent
fractions with the denominator of 100 (e.g., 75/100 = 75%). That is, the per-
centage notation (%) indicates that the number, like a fraction, represents a
proportional relation. However, these theorists view percentages as “privi-
leged proportions” in that they “take advantage of the natural and powerful
ordering of the decimal numerations system” (p. 445). That is, the format of
percentages is metric (base 10) and one-dimensional, much like decimals.
Accordingly, the pattern of performance to be expected for percentages rela-
tive to fractions and decimals is unclear. The underlying proportional mean-
ing of percentages may affect performance in a manner similar to the fraction
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format, but their metric notation may influence performance in a manner sim-
ilar to decimals.

We report two studies that investigated adults’ ability to perform magni-
tude comparisons and relational identifications across symbolic and non-sym-
bolic magnitudes. In Experiment 1, participants compared the magnitude of a
proportion conveyed by a picture (continuous or discrete) to that of a rational
number in the format of a decimal, fraction or else percentage. Based on pre-
vious research (e.g., DeWolf et al., 2014), we expected performance to be facil-
itated by decimals relative to fractions. The impact of format might interact
with entity type (e.g., better performance for fractions with discrete pictures
but for decimals with continuous pictures). However, if magnitude compari-
sons are naturally based on a continuous internal representation, then dis-
crete pictures may be recoded as continuous quantities (a process that would
take extra time), so that comparisons would be easier with decimals for both
display types.

In Experiment 2, participants used fractions, decimals and percentages to
identify ratio relationships among discrete and continuous entities. Based on
previous research (e.g., DeWolf et al., 2015a), we expected that this task would
be facilitated by fractions relative to decimals, but only for discrete (i.e., count-
able) displays. For both tasks, the expected performance for percentages is
open to alternative predictions. Percentages may behave like fractions, like
decimals, or perhaps in some intermediate fashion.

Experiment 1

Method

Participants
Participants were 44 undergraduate students (mean age = 20.3, 31 female)
from the University of California, Los Angeles (UCLA), who received course
credit for participating.

Materials and design
The experiment was a 3 (number type: fraction, decimal, percentage) £ 2
(entity type: continuous vs. discrete) within-subjects design.

The stimulus on each trial consisted of a picture that was either continuous
or discrete (see Figure 2), and a number represented as either a fraction, deci-
mal or percentage. Participants were required to decide if the non-symbolic
proportion in the picture was larger or smaller than the number presented.
For half of the trials, the number was larger than the proportion shown in the
picture. Table 1 lists the stimuli used across the trials. In order to make it easier
for participants to process the pictures and numbers, and to highlight the dif-
ference between discrete and continuous pictures, the proportions were
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created using only single-digit numbers in the numerator and denominator
positions. Each magnitude was matched across number types, such that frac-
tions were divided and rounded to two places for equivalent decimals and
multiplied by 100 for equivalent percentages (e.g. 3/4, 0.75, 75%). There were
a total of 20 trials for each combination of picture type and number type (i.e.,
120 trials in total).

Procedure
Participants were shown the stimuli randomised within number-type blocks
(40 trials in each block). Within each block, the order of trials was randomised

Figure 2. Examples of discrete and continuous stimuli. Both stimuli represent the propor-
tion 1/3, where the black portion represents the numerator value and the grey portion
represents the denominator value.

Table 1. Stimuli used for magnitude comparison task (Experiment 1).
Non-symbolic proportion Symbolic decimal Symbolic fraction Symbolic percentage (%)

8/9 0.75 3/4 75
7/8 0.80 4/5 80
5/8 0.60 3/5 60
5/7 0.88 7/8 88
5/6 0.78 7/9 78
4/7 0.67 2/3 67
4/5 0.11 1/9 11
3/8 0.20 1/5 20
3/7 0.22 2/9 22
3/5 0.86 6/7 86
2/9 0.57 4/7 57
2/7 0.17 1/6 17
2/5 0.89 8/9 89
2/3 0.13 1/8 13
1/9 0.63 5/8 63
1/8 0.44 4/9 44
1/7 0.38 3/8 38
1/5 0.88 7/8 88
1/4 0.71 5/7 71
1/3 0.29 2/7 29

Note: Each trial was presented in two forms (as all the non-symbolic magnitudes appeared as both
continuous and discrete pictures).
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with respect to continuous and discrete pictures. Each trial consisted of a pic-
ture (1500 ms), followed by a mask composed of scrambled black and white
dots (150 ms), then number. On the number screen, participants were
allowed up to 7000 ms to input their answer. They were told to select a key
labelled “picture” (the “a” key) or a key labelled “number” (the “l”) key for
whichever proportion they thought was larger. The positions of these keys
were reversed for half of the participants. No feedback about accuracy was
given.

Results and discussion

Accuracy for each condition was averaged across participants. Mean accuracy
was 86% for each of the three number types. A 3 £ 2 within-subjects ANOVA
yielded no reliable effects of number type, picture type or their interaction.
Accordingly, our analyses focus solely on response times (RTs).

RTs for correct trials were averaged across participants (see Figure 3). A 3 £
2 within-subjects ANOVA yielded a reliable influence of picture type such that
continuous pictures were evaluated significantly faster than discrete pictures
(continuous: 1301 ms vs. discrete: 1444 ms; F(1, 86) = 20.05, MSE = 6.8, p <

0.001, h2p = 0.318). There was also a significant effect of number type (F(2, 86)
= 30.58, p < 0.001, h2p = 0.416) such that trials with fractions were slower than
trials with either decimals (fractions: 1481 ms vs. decimals: 1292 ms; t(43) =
7.0, p < 0.001) or percentages (fractions: 1481 ms vs. percentages: 1344 ms;
t(43) = 4.8, p < 0.001). The interaction between number type and picture type
was not reliable (F(2, 86) = 0.47, MSE = 2.5, p = 0.63, h2p = 0.011).

Figure 3. Mean correct response times for fractions, decimals and percentages for con-
tinuous versus discrete pictures (Experiment 1). Error bars indicate § 1 standard error of
the mean.
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In order to examine the symbolic distance effect, we averaged RTs for cor-
rect trials across trials (see Figure 4). We then performed regressions on each
of the trial types across number and picture types, using the logarithm of the
distance between the non-symbolic and symbolic proportions as a predictor
for RTs (see DeWolf et al., 2014). As summarised in Table 2, beta weights were
reliable for all comparisons, indicating that a distance effect (reduced RTs as
numerical distance increased) was observed for each combination of number
type and picture type. In contrast to previous studies (DeWolf et al., 2014;
DeWolf et al., 2016) in which fractions yielded a steeper slope than other
number types, slopes did not differ reliably across number types in Experi-
ment 1. The lack of a slope difference in the present study is likely a floor
effect attributable to the relative simplicity of the stimuli used in the present
experiment (i.e., fractions all involved single-digit numerators and
denominators).

In summary, Experiment 1 demonstrated an advantage in processing
speed for decimals over fractions in comparing the magnitude of a number
with that of a non-symbolic picture. The percentage format produced essen-
tially the same advantage as the decimal format. It is possible that people
tend to convert fractions into a continuous code (e.g., by dividing) prior to
making magnitude comparisons. The advantage of the metric formats held
for discrete as well as continuous displays; however, comparisons were slower
overall when the picture showed a discrete rather than continuous

Figure 4. Mean correct response times for continuous (panel A) and discrete (panel B) tri-
als based on the numerical distance between non-symbolic (picture) and symbolic
(numerical) proportions, for each of the three number types (Experiment 1).

Table 2. Results of regression analyses based on log numerical distance (Experiment 1).
Picture type Number type Beta Significance

Discrete Fraction ¡0.96 t(18) = 7.4, p < 0.001
Decimal ¡0.72 t(18) = 7.2, p < 0.001
Percentage ¡0.67 t(18) = 5.16, p < 0.001

Continuous Fraction ¡0.63 t(18) = 6.22, p < 0.001
Decimal ¡0.59 t(18) = 8.57, p < 0.001
Percentage ¡0.65 t(18) = 7.24, p < 0.001
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magnitude, suggesting that people may have converted the discrete picture
into a continuous magnitude prior to comparing it with a number. This find-
ing provides additional evidence that metric numerical magnitudes are linked
more closely to continuous than to discrete quantities. Potential alternative
interpretations will be considered in the General Discussion.

Experiment 2

Experiment 1 demonstrated an advantage of decimals and percentages rela-
tive to fractions in comparing magnitudes of rational numbers to those of pic-
tures. Using closely matched stimuli, Experiment 2 examined the pattern of
alignment in a task that required judgements about quantitative relations
(alternative ratios between quantities). This laboratory test of relational proc-
essing is sufficiently challenging that it can be used with college students
operating under speed pressure (DeWolf et al., 2015a; Lee et al., 2016;
Plummer et al., 2017). The task has the critical property that it can be per-
formed successfully without calculating the magnitude of any number. Similar
relational tasks taught in school include judging equivalence of different frac-
tions (DeWolf, Bassok, & Holyoak, 2015b, 2016) and multiplying by reciprocals
(DeWolf, Son, Bassok, & Holyoak, 2017). The knowledge required to make rela-
tional judgements such as these is quite different in nature from the pure
measure of magnitude understanding provided by the magnitude compari-
son task used in Experiment 1. Based on the analysis of rational numbers pre-
sented earlier, we hypothesised that the relation task would show an
advantage for fractions paired with discrete displays.

Method

Participants
Participants were 60 UCLA undergraduate students (mean age = 20.7, 44
female) who received course credit for participating.

Materials and design
The study was a 3 (number type: fraction, decimal, percentage) £ 2 (picture
type: discrete vs. continuous)£ 2 (relation type: part-to-part vs. part-to-whole)
within-subjects design. A part-to-part ratio (PPR) is the relation between one
subset and another subset that together make up a whole quantity (i.e., what
is often termed a “ratio”). A part-to-whole ratio (PWR) is the relation between
one subset and the whole (i.e., a “proportion”). Figure 5 illustrates an example
stimulus. In this example, a discrete picture containing two grey dots and four
black dots could represent a PWR: two grey dots out of six dots total (2/6).
Alternatively, this same discrete display could represent a PPR: two grey dots
compared to four black dots (2/4). This type of distinction between ratio types
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is one that creates difficulty for set-inclusion reasoning in young children (e.g.,
McCabe, Siegel, Spence, & Wilkinson, 1982). For example, a child shown a set
of flowers that includes a number of roses and a lesser number of tulips will
sometimes erroneously report that “there are more roses than flowers”,
apparently confusing the salient PPR with the part–whole relation.

Note that a display could represent either of two possible PWR relations
(e.g., Figure 5 depicts both 2/6 and 4/6 as PWR relations). However, once the
number is presented, it will match at most one of these two PWR possibilities,
thereby disambiguating which case is relevant on the trial. It is possible that
some inhibitory process is required to suppress the irrelevant PWR. This inhi-
bition of the irrelevant ratio might slow processing of PWR relations relative
to PPR relations (although it is also possible that both PWR relations would
have to be suppressed on PPR trials). In any case, our hypotheses focus on
the conceptual match between fractions and discrete displays, rather than on
the relative difficulty of identifying PWR versus PPR relations.

The stimulus on each trial consisted of a picture that was either continuous
or discrete, and a symbolic number represented as either a fraction, decimal
or percentage. The images representing non-symbolic quantities were very
similar to those used in Experiment 1, except that the colour of the smaller
subset varied randomly from trial to trial (i.e., for half of the trials the smaller
subset was grey, and in the other half of the trials the smaller subset was
black). The value of the rational number displayed with a particular picture on
each trial corresponded to either the PPR or PWR shown in the picture. The
participant’s task was to decide which of the two relationships (PPR or PWR)
matched the number and picture combination. Since the colour of the smaller
subset varied randomly, the colour that participants needed to consider to
correctly identify a PWR relation varied from trial to trial, and could not be
determined until the number was presented and considered in relation to the
picture. Both accuracy and RTs were collected.

Figure 5. Example picture-plus-number stimulus (Experiment 2). The number specified in
this trial is 2/6, making the correct response PWR. For the corresponding PPR problem,
the number paired with this picture would be 2/4.
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Procedure
Participants received the following instructions: “In this experiment, you will
see a display followed by a value. The display and value will show one of two
relationships.” Below this statement, two different displays were presented,
showing the PPR and PWR relations, respectively. In instructions to partici-
pants, the PPR relation was referred to simply as “R1”, and the PWR relation
was referred to as “R2”. Each display was shown with the corresponding sym-
bolic notation in fraction, decimal and percentage forms that matched the rel-
evant ratio. Participants read the following description of each relation: “R1:
value represents the ratio of one subset to the other subset (part-to-part). R2:
value represents the ratio of one subset to the total set (part-to-whole).”
Finally, participants were told that their task on each trial was to identify
which of these two relationships corresponded to the number paired with
the picture. Participants were instructed to press the “a” key to indicate R1
and the “l” key to indicate R2.

The experiment consisted of 120 trials, blocked by number type (40 trials per
block). The order of blocks was counterbalanced across participants (using all six
possible orders of the three blocks). Within each block, trial order and picture
type (continuous versus discrete) were varied randomly. On each trial, a fixation
cross was presented for 500 ms. Then, the cross disappeared and the picture
appeared at the top of the screen. After 1500 ms, the number appeared below
the picture, which remained visible. After the number appeared, participants
were allowed up to 7000 ms to input their answer. The next trial began when
the response was given or after the maximum time had elapsed. The trial struc-
ture was virtually identical to that used in Experiment 1, except that in Experi-
ment 2, the picture remained visible until the participant responded (due to the
greater overall difficulty of the relation judgement task).

Prior to beginning each block, participants completed four practice trials, one
for each combination of factors (continuous and discrete pictures for both PPR
and PWR relations, all paired with the number type used in that block). After
inputting a response, participants were shown the correct response and an
explanation for why that relation was correct. After completing the practice tri-
als, participants were told that they would begin the test trials. At this point,
they were instructed to respond as quickly as possible without sacrificing accu-
racy. In contrast to Experiment 1, feedback (the text “Response Incorrect”) was
shown after each trial that resulted in an error (due to the greater difficulty of
the task in Experiment 2). The feedback message remained on the screen until
participants pressed a key to advance to the next trial.

Results and discussion

Data from three participants were excluded from analysis: one who did not
complete all blocks, and two who pressed the same key throughout most of
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the experiment, with RTs consistently under 500 ms. Analyses were based on
the remaining 57 participants. Accuracy and mean RTs on correct trials were
calculated for each condition for each participant. An initial omnibus ANOVA
found that the interaction between number type and display type did not
vary across the two ratio types (F(2, 112) = 1.532, MSE = 0.018, p = 0.221, h2p =
0.027). Accordingly, all analyses are reported after collapsing across the factor
of ratio type.

Figure 6 displays the pattern of accuracy for each condition. Task difficulty
was much greater for the relation identification task than for magnitude com-
parisons (Experiment 1); however, mean accuracy exceeded chance (50%) for
all conditions. A 3 (number type: decimal, fraction, percentage) £ 2 (display
type: continuous, discrete) within-subjects ANOVA was used to assess differ-
ences in accuracy and also in RT. A significant interaction was obtained
between display type and number type (F(2, 112) = 11.212, MSE = 0.012, p <

0.001, h2p = 0.167). For discrete displays, participants were more accurate
when using fractions (80%) than decimals (65%) or percentages (66%).
Planned comparisons revealed that the difference between fractions and dec-
imals was statistically reliable (t(56) = 6.34, p < 0.001), as was the difference
between fractions and percentages (t(56) = 5.46, p < 0.001). Accuracy for dec-
imals and percentages did not differ (t(56) = 0.62, p = 0.54). For continuous
displays, accuracy did not differ across number types (F(2, 112) = 1.47, MSE =
0.012, p = 0.24, h2p = 0.025).

Figure 7 shows mean RTs for correct trials for each condition. The interac-
tion between display type and number type was reliable (F(2, 112) = 13.57,
MSE = 146,653, p < 0.001, h2p = 0.195). For discrete displays, mean RTs were
faster for fractions (1925 ms) than for decimals (2200 ms) or percentages
(2289 ms). The difference between fractions and decimals was reliable

Figure 6. Mean accuracy for fractions, decimals and percentages for continuous versus
discrete pictures (Experiment 2). Error bars indicate § 1 standard error of the mean.
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(t(56) = 3.05, p = 0.003), as was the difference between fractions and percen-
tages (t(56) = 3.81, p< 0.001). RTs for decimals and percentages did not differ
significantly (t(56) = 0.96, p = 0.34). The RT analyses thus confirm that the
accuracy advantage obtained for fractions over decimals and percentages is
not attributable to speed-accuracy trade-offs.

Overall, the results of Experiment 2 revealed that in a task requiring rela-
tion identification, an advantage for fractions over both decimals and percen-
tages was observed both in accuracy and RT, but only for discrete displays.
The findings for fractions and decimals replicate those obtained by DeWolf
et al. (2015a) (also Lee et al., 2016; Plummer et al., 2017). Accuracy was the
highest and RTs the lowest for fractions paired with discrete pictures, indicat-
ing that the explicit relational structure of fractions conferred an advantage
for these relational judgements. In discrete displays, the numerator and
denominator of a fraction can be mapped directly to the countable subsets in
the display. Metric formats for rational numbers, lacking this internal relational
structure, cannot be mapped to countable subsets without manipulation. As a
consequence, participants have to rely on estimation strategies, which are
more error-prone than counting.

General discussion

Summary

Across two experiments using closely matched stimuli, a dissociation was
observed between performance on magnitude comparisons versus relation
judgements for different rational number formats. Specifically, we tested the

Figure 7. Mean correct response times for fractions, decimals and percentages for con-
tinuous versus discrete pictures (Experiment 2). Error bars indicate § 1 standard error of
the mean.
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hypotheses that decimals are conceptually linked to continuous mass quanti-
ties and naturally express magnitude, whereas fractions are conceptually
linked to discrete, countable quantities and naturally express relations
between subsets. The present results support these hypotheses. More
broadly, these experiments support the hypothesis that rational numbers are
subject to semantic alignment. Rather than simply serving as notational var-
iants, different formats of numbers are naturally well-suited to represent dif-
ferent kinds of real-world quantities and relations between them

In Experiment 1, participants compared magnitudes of symbolic and non-
symbolic quantities. For both continuous and discrete displays, RTs were
faster for comparisons involving decimals or percentages than for compari-
sons involving fractions. RTs were faster overall for continuous displays than
for discrete displays. In addition, we observed symbolic distance effects for
each combination of number and display type, as RTs decreased with
increases in the numerical distance between the magnitude shown in the pic-
ture and the magnitude of the number paired with it. These results suggest
that metric formats (decimals and percentages) naturally lend themselves to
magnitude comparison tasks, and are better aligned with continuous non-
symbolic representations of magnitude. Discrete displays were processed
more slowly than continuous displays, suggesting that discrete displays were
converted into a continuous code in order to perform the magnitude compar-
ison task.

In Experiment 2, participants made judgements about ratio relations based
on a symbolic and non-symbolic quantity. For discrete displays, accuracy was
the highest and RT the fastest for judgements involving fractions, whereas
performance did not differ between decimals and percentages. This finding
supports the hypothesis that the two-dimensional format of fractions is well-
suited for expressing relations between countable sets. Decimals and percen-
tages lack this internal relational structure, and hence tend to evoke estima-
tion strategies (Plummer et al., 2017), which are more error-prone than
counting. It is worth emphasizing that the benefit afforded by fractions and
discrete pictures reflects the joint contributions of both – a discrete picture
provides countable elements that allow for exact calculation, while the bipar-
tite structure of a fraction provides an explicit relational structure to which
those counted elements can be mapped.

The present study is the first to compare performance on these tasks for
percentages as well as decimals and fractions. In both experiments, percen-
tages behaved very much like decimals, yielding faster decisions than frac-
tions for magnitude comparisons (Experiment 1), but less accurate and slower
decisions than fractions for relational judgements with discrete quantities
(Experiment 2). These findings indicate that although in some cases percen-
tages may evoke the concept of proportion, as do fractions (Parker & Lein-
hardt, 1995), their dominant interpretation is similar to that of decimals.
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Whereas fractions are inherently two dimensional in nature, percentages have
an implicit fixed denominator (100), and therefore are one-dimensional-like
decimals (Halford et al., 1998, 2010). The close linkage between percentages
and decimals is consistent with work suggesting that it can be effective to
introduce rational numbers first using percentages, followed by decimals and
then fractions (Kalchman, Moss, & Case, 2001; Moss & Case, 1999).

Implications for processing of fractions

The differences in the effectiveness of different number types across the two
tasks may reflect flexibility in the representations people use to process frac-
tions. Evidence suggests that people can operate on fractions either as holis-
tic magnitudes or in terms of their discrete components (numerator and
denominator). Previous studies of magnitude comparisons with fractions indi-
cate that adults sometimes process only the whole-number components of
the fraction (e.g., Bonato, Fabbri, Umilt�a, & Zorzi, 2007; Fazio, DeWolf, & Sie-
gler, 2016). But when the stimulus set is constructed so that reliable judge-
ments require consideration of the holistic magnitude (as in our Experiment
1), a clear distance effect is obtained with fractions (e.g., Schneider & Siegler,
2010).

Few previous studies (e.g., Matthews & Chesney, 2015) had examined how
holistic processing of rational number magnitudes may vary depending on
the symbolic or non-symbolic nature of the representation. The present
Experiment 1 is the first to investigate magnitude comparisons when both
the type of non-symbolic quantity (continuous vs. discrete) and the type of
symbolic number format (fraction, decimal, whole number) are systematically
varied. We found that for all number formats, comparisons were facilitated
when the non-symbolic quantity was continuous rather than discrete. In addi-
tion, the task was easier when the numbers were decimals or percentages
rather than fractions. The overall pattern of results supports the hypothesis
that people prefer to make magnitude comparisons using an internal repre-
sentation akin to a continuous number line. Metric symbolic formats (deci-
mals and percentages) convey continuous magnitudes more directly than do
fractions, but fractions also are converted into continuous magnitudes in
order to compare them to non-symbolic quantities.

The way in which proportions are represented (both symbolically and non-
symbolically) has implications for understanding and isolating relationships
between entities. In contrast to the magnitude comparison task, the relation-
identification task (Experiment 2) favours componential processing of frac-
tions (mapping the numerator and denominator onto distinct components of
the visual display). In Experiment 2, one might have expected fractions to
lead to superior performance even when the display showed a continuous
quantity, since it would seem possible to mentally impose discrete divisions
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that could then be counted. However, a recent study using eye-tracking
methods found no evidence of a counting strategy being applied to continu-
ous displays even when paired with a fraction (Plummer et al., 2017). It
appears that “mental discretisation” is difficult for the type of continuous dis-
plays used in the present study.

It could be argued that the fraction advantage observed in Experiment 2
was due to the fact that the fraction elements were always in a one-to-one
relationship with the discrete displays (e.g. a PWR relation involving three red
segments out of seven total segments paired with the fraction 3/7). However,
DeWolf et al. (2015a) demonstrated that a similar fraction advantage with dis-
crete displays could also be obtained in a more complex analogy task, even
when the fraction elements were not in one-to-one correspondence with the
display (e.g., three out of seven items paired with 6/14). Thus, it appears that
the fraction advantage is not limited to cases involving a one-to-one mapping
between fraction components and display elements.

Implications for reasoning and learning

The fact that percentages behaved very much like decimals in both tasks
examined in the present study is consistent with other work on reasoning.
The fixed denominator (100) associated with percentages implies that they
(unlike fractions) do not convey “natural frequencies” in a population. In a
variety of inference tasks, an advantage has been found for natural frequency
formats over percentages, probabilities and other formats for which the size
of the specified population has been removed or standardised (Gigerenzer &
Hoffrage, 1995; Hoffrage, Gigerenzer, Krauss, & Martignon, 2002; Tversky &
Kahneman, 1983). The present study shows a similar advantage for fractions
over percentages in a different type of reasoning task – relation identification.
Nonetheless, there may well be other reasoning tasks in which the percent-
age format is particularly effective. For example, percentages seem to be pre-
ferred to decimals or fractions when conveying quantities construed as rates
(e.g., “the annual interest rate is 5%”) or expressions of uncertainty (“there’s a
50% chance of rain today”). Future research will be needed to determine if
indeed there is an advantage for percentages over decimals in certain reason-
ing tasks, or whether percentages remain in use simply as an accident of
mathematical history.

The impact of the type of non-symbolic magnitude representation has
important implications for both magnitude representation and relational rea-
soning. It appears that continuous entities are better suited for magnitude
estimation, whereas discrete entities allow for easier isolation of the sub-com-
ponents of a ratio. Both Rapp et al. (2015) and Lee et al. (2016) found that
educators adhere to certain conventions when using different types of sym-
bolic rational numbers to reference relationships or quantities that are either
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discrete or continuous. In particular, decimals are more often used with con-
tinuous entities whereas fractions are recruited more often for discrete enti-
ties. These findings, coupled with the results of the current study, suggest
that for both symbolic and non-symbolic representations, different quantity
types may be differentially effective in teaching magnitudes versus relational
reasoning.

Further, the relational structure of fractions may play an important role in
preparing students to learn more abstract mathematics. For example, under-
standing fractions appears to be crucial for grasping the concept of a recipro-
cal relation (DeWolf et al., 2017). In addition, a fraction exemplifies an
important type of duality. A fraction is at once a relationship between two
quantities, expressed as a/b, and also the magnitude corresponding to the
division of a by b. Thus, fractions can either be interpreted as the result of a
division operation (yielding a magnitude understanding) or as a specific com-
parison between two sets. Similar dualities arise in algebra (Sfard & Linchevski,
1994). For example, the expression 5x indicates a relation between the magni-
tude of 5 and that of some unknown number x. This relation is meaningful
even though the magnitude of the overall expression cannot be known prior
to solving for the variable. Recent work has shown that measures of relational
understanding with fractions predict early success in learning algebra (DeWolf
et al., 2015b, 2016). More generally, research on the differential affordances of
alternative mathematical notations may provide a bridge between numerical
cognition and higher order reasoning.
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